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Abstract

Using EDQNM nonlocal spectral expansions, we have developed a spectral-dynamic model for LES of turbulence, allowing to

account for kinetic-energy spectra steeper than Kolmogorov at the cuto�. In the case of a temporal mixing layer forced by a weak

3D isotropic white noise, a self-similar state is reached, statistically in good agreement with laboratory experiments, except for

kinetic-energy spectra which behave like kÿ2 at the cuto�, instead of kÿ5=3. The pressure spectrum is compared with quasi-normal

predictions. Concerning coherent-vortex dynamics, the helical-pairing organization already found with the aid of DNS has been

recovered. When the initial forcing is quasi 2D, no self-similar state is reached. Coherent vortices consist then of quasi two-di-

mensional Kelvin±Helmholtz billows with hairpin vortices stretched in-between. Afterwards, the model has been applied success-

fully to a turbulent channel ¯ow at h� � 204 and h� � 389. In the latter case, the computing time is reduced by a factor of 100 with

respect to DNS. The model works also well for LES of a channel rotating about a spanwise axis. Finally, we have proposed a

generalization of the spectral-dynamic model in physical space. Ó 1998 Elsevier Science Inc. All rights reserved.
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1. Introduction

Generally, the subgrid-scale modelling problem in Large-
Eddy Simulations (LES) of turbulence is posed in physical
space. This has two major drawbacks: ®rst, it obliges to use an
eddy-viscosity assumption, which is widely recognized as being
unsatisfactory, since it assumes in fact a separation of scales
between resolved and subgrid scales. Second, simulations in
physical space prevent the use of pseudo-spectral methods,
which are however much more precise than ®nite-di�erence or
®nite-volume methods. This is why in the present paper we will
mainly work in Fourier space, and use a particular type of
spectral eddy viscosity able to deal both with transitional sit-
uations and the proximity of a wall. We will present the
spectral-dynamic model, and apply it to a temporal mixing
layer (forced by a 3D or a quasi 2D random perturbation) and
a channel ¯ow (non-rotating or rotating). We will be interested
by statistical predictions and by coherent-vortex dynamics as
well. We will also look brie¯y how the spectral-dynamic model
may be implemented in physical space.

2. The spectral-dynamic model

We start by considering the LES problem from a spectral
point of view, with a sharp cuto� above kc in Fourier space in

a context of homogeneous and isotropic turbulence (Lesieur,
1997). Following the concept of spectral eddy viscosity intro-
duced by Kraichnan (1976), Chollet and Lesieur (1981) have
proposed to renormalize the eddy viscosity with the aid of
�E�kc; t�=kc�1=2

, where E(k,t) is the kinetic-energy spectrum.
More precisely, the eddy viscosity in spectral space writes

mt�k; kc; t� � K�k=kc� m1t �kc; t� �1�
with

m1t �kc; t� � 0:267
E�kc; t�

kc

� �1=2

; �2�

K�k=kc� � 1� 34:5 eÿ3:03�kc=k�: �3�
The constant 0.267 was obtained with the aid the Eddy-
Damped Quasi-Normal Markovian (EDQNM) nonlocal-in-
teractions theory (see Chollet and Lesieur, 1981; Lesieur,
1997), using leading-order expansions in powers of the small
parameter k=kc, and assuming that E(k) follows a Kolmogorov
law extending above the cuto�. In Eq. (3), K�k=kc� displays a
strong overshoot (cusp-behaviour) in the vicinity of k=kc � 1,
as shown by Kraichnan (1976). This is due to local or semi-
local interactions in the neighbourhood of kc. If one goes back
to physical space, the plateau part of the spectral eddy vis-
cosity corresponds to a classical eddy-viscosity formulation,
which, as already stressed, assumes in fact a separation of
scales between supergrid and subgrid scales. This is of course
wrong, and ®xes the limits of the eddy-viscosity formulation.
Therefore, the cusp part of the spectral eddy viscosity is im-
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portant since it contains e�ects beyond the classical eddy-vis-
cosity concept.

The eddy-di�usivity was found to behave qualitatively the
same (Chollet and Lesieur, 1982), with a corresponding tur-
bulent Prandtl number Prt � m1t =k1t approximately constant
and taken equal to 0.6 (see Lesieur, 1997, for details).

The major drawback of the eddy viscosity described by
Eq. (1) is that it assumes a Kolmogorov spectrum at the cuto�.
This condition is obviously not satis®ed in transitional regions,
or close to a wall even at high Reynolds numbers. In fact, let us
express the EDQNM asymptotic spectral eddy viscosities and
di�usivities m1t �kc; t� and j1t �kc; t�, still using leading-order
expansions in powers of the small parameter k=kc. We have

m1t �kc; t� � 1

15

Z1
kc

h0pp 5E�p; t� � p
oE
op

� �
dp �4�

and

j1t �kc; t� � 2

3

Z1
kc

hT
0pp E�p; t� dp; �5�

where hkpq and hT
kpq are nonlinear triple-correlation relaxation

times of the EDQNM theory. The eddy coe�cients may now
be evaluated in a less restrictive context than previously. As-
suming that the kinetic energy spectrum follows a power law
E�k� / kÿm instead of a Kolmogorov law, we ®nd (for
0 < m < 3):

m1t �kc; t� � 0:31 Cÿ3=2
k

5ÿ m
m� 1

�3ÿ m�1=2 E�kc; t�
kc

� �1=2

�6�
with the associated turbulent Prandtl number

Prt � 0:18 �5ÿ m�: �7�
The above scaling is not valid for m > 3. The eddy viscosity
and di�usivity (normalized by E�kc; t�=kc� �1=2

) as a function of
m are presented on Fig. 1. One can observe on this graph that
m1t and k1t decrease monotonously in the interval 0 < m < 3.
It is interesting to note that m1t is reduced by more than 50%
with respect to its value for m � 5

3
, as soon as m > 2:2, and

multiplied at least by a factor of 2 if m < 1.
In the ``spectral dynamic model'' used for the LES pre-

sented below, the spectral eddy viscosity is de®ned with the aid
of Eqs. (1) and (6). Thus, the k-dependence of the eddy-vis-
cosity have been conserved through (3). As already stressed, it
is important to keep the cusp, in order to avoid the classical
eddy-viscosity assumption. Using the spectral-dynamic model
permits also to reduce automatically the eddy viscosity without
any empirical correction (like adjustment of constant(s) in the
model) in the following two situations.

· For transitional or moderate Reynolds number ¯ows, where
no inertial zone can exist in the kinetic energy spectrum.

· For near-wall region of fully turbulent ¯ows, where kinetic
energy spectra are steeper than Kolmogorov, even at high
Reynolds number.
Note that Eq. (6) is only valid for m6 3. For m > 3, our

choice was to set the eddy-viscosity equal to zero. From a
practical viewpoint, this may be justi®ed by considering that if
the kinetic energy spectrum is steep enough, there is no energy
pile-up at high wave numbers, so that no subgrid-scale mod-
elling is really necessary. Note ®nally that for numerical codes
based on spectral methods as in the following sections, the
spectral-dynamic model is very easy to use, with a negligible
extra computational cost (less than 1% of the total computa-
tional cost of a LES).

3. Application to mixing layer

3.1. Flow con®guration and numerical aspects

Two LES of temporal mixing layers di�ering only in the
initial perturbations from a hyperbolic-tangent velocity pro®le
U tanh y=d0 were carried out. The initial Reynolds numbers in
the two cases are Redi � Udi=m � 2000, where di � 2d0 is the
initial vorticity thickness. We denote by xi � 2U=di the initial
maximal vorticity modulus (vorticity at the in¯exion point).

The ®ltered Navier±Stokes equations are solved in a cubic
computational domain of side Lx � Ly � Lz � 4 ka, where
ka � 7 di � 2p=ka is the wavelength of the most ampli®ed
streamwise mode predicted by the inviscid linear-stability
theory (Michalke's mode). Such a domain allows thus for two
successive pairings of Kelvin±Helmholtz (KH) vortices during
a simulation. Periodic boundary conditions are imposed in the
streamwise (x) and spanwise (z) directions, while free-slip
boundary conditions are employed for y � � Ly=2. Pseudo-
spectral methods are used to solve the equations for the ex-
plicit velocity û�k; t� in Fourier space:

o
ot
� m� mt�k; kc; t�� � k2

� �
û�k; t�

� P F F ÿ1 û�k; t�
� �

� F ÿ1 ik� û�k; t�
� �h ih i

; k ´ û�k; t� � 0;

�8�
where F stands for the discrete Fourier transform operator and
P is the projector on the plane normal to the wavevector k,
allowing to eliminate the pressure. Note that free-slip boun-
dary conditions are veri®ed by means of pure sine or cosine
expansions in the y-direction. The equations are integrated in
time using a third-order low-storage Runge±Kutta scheme
(Williamson, 1980). Aliasing errors (Canuto et al., 1988) are
minimized by taking more collocation points in physical space
(1203) than Fourier modes (963).

Initial conditions consist in superposing to a basic hyper-
bolic-tangent velocity pro®le two types of random perturba-
tions
· a small three-dimensional Gaussian isotropic perturbation

of kinetic energy 10ÿ4U2, for the ®rst simulation referred
to as the ``3D Perturbation Case'';

· a combination of two perturbations: one two-dimensional
(without any dependence on the spanwise direction) of ki-
netic energy 10ÿ4U2 plus a three-dimensional of kinetic en-
ergy 10ÿ5U2, for the second simulation called ``Q2D
Perturbation Case''.
The simulations were stopped at t � 60 di=U (for the 3D

Case) and 85 di=U (for the Q2D Case). No con®nement e�ects
on the mixing layers were observed. At these times, the Rey-

Fig. 1. Variation with m (the slope of the kinetic-energy spectrum at

the cuto�) of the eddy viscosity and di�usivity (normalized by

E�kc; t�=kc� �1=2
) and turbulent Prandtl number. Symbols correspond to

m � 5
3
. ±±±±±±: m1t , - - - -: k1t ,.......: Prt.
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nolds number based on the local vorticity thickness d (de®ned
as 2U=j xzh i�y � 0�j) was Red� 24 000 for the two simulations.

In these LES, the spectral-dynamic model is used in its
``standard'' version de®ned by Eqs. (1), (3) and (6). The
spectrum slope m is calculated at each time step (and at each
sub-step of the Runge±Kutta method), from the three-dimen-
sional kinetic energy spectrum in the whole domain, using a
least-square method applied to wave numbers ranging between
kc/2 < k < kc.

3.2. 3D perturbation case

3.2.1. Model validation and statistical results
Fig. 2 shows the temporal evolution of m and E(kc) for the

whole simulation. The spectrum slope decreases initially from
the high initial value (m � 9). At t � 10 di=U , which corres-
pond to the time of the vortex roll-up, we have m � 3. It
means that the eddy-viscosity was inactive (see Eq. (6)) up to
this instant, and that all the dissipation was due to molecular
viscosity. Hence instabilities are allowed to grow without any
in¯uence of the eddy viscosity, which is certainly desirable.
Between t� 10 and 30 di=U (moment of the ®rst pairing), the
slope m decreases from 3 to 2. After that, m remains very close
to 2 up to the end of the simulation. The temporal evolution of
E(kc), which reaches its maximum at t � 25 di=U and then

decreases slowly, might indicates that a ``quasi-equilibrium
state'' characteristic of the self-similar regime was attained.

Statistics of the recorded velocity pro®les were used to de-
termine the temporal evolution of the local vorticity thickness,
and compared with experimental data of spatially-growing
mixing layers carried out by Bell and Mehta (1990). The l.h.s.
of Fig. 3 shows d(t). A fairly good linear growth is established
very early at a rate of Uÿ1dd=dt � 0:19. For an associated
spatial mixing layer between two streams of velocities v1 and v2

with v1 ÿ v2 � 2u, and with the change of variable
x � 1

2
�u1 � u2�t, this corresponds to the growth rate

u1 ÿ u2�� = u1 � u2� �� � dd=dx � 0:19. During the ®rst pairing
(t � 30), the spreading slows down, and then it starts rising
again at the same linear rate. In spite of the di�erences in the
growth of spatial mixing layers reported in several works
(Silvestrini, 1996), and also between the spatial and the tem-
poral problems, the value found here is very close to the tra-
ditionally accepted result of 0.18 reported in Brown and
Roshko's experiments (Brown and Roshko, 1974). The r.h.s.
of Figs. 3 and 4 show, respectively, the mean streamwise ve-
locity and velocity-component variances at the end of the
simulation (t � 60 di=U ). The agreement between numerical
and experimental data is good. The small di�erences, especially
for u0u0h i and u0v0h i, may be due to a lack of convergence be-
cause only spatial averages in periodic directions are used for

Fig. 2. 3D mixing layer; time evolution of m (±±±) and E(kc) (- - -).

Fig. 3. 3D mixing layer; left, time evolution of the local vorticity thickness; right, comparison of mean streamwise velocity (straight line) with ex-

perimental data of Bell and Mehta (1990) (circles).
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present results. This good agreement seems to indicate that a
self-similar state has been established at the end of the simu-
lation. To con®rm this point, normalized three-dimensional
kinetic energy spectra are presented in Fig. 5 (the normaliza-
tion is made by U and the local vorticity thickness d). The good
collapse of the di�erent spectra for t� 50, 55 and 60 di=U is
another good indicator of self-similarity. Note also that Bell
and Metha have considered that a self-similar regime was es-
tablished at a streamwise distance of about 250 di from the

splitter plate, with a velocity ratio k � �U1 ÿ U2�=
�U1 � U2� � 0:25. With the above introduced space-time
change of variables, and using the convection velocity
Uc � �U1 � U2�=2, we have

tself � xself

Uc

� k
xself

U
; �9�

and the value found tself � 62:5 di=U is very close to the time
considered for present statistics.

The principal disagreement with experiments concerns the
spectral slope of the kinetic-energy spectrum. Indeed, mixing-
layer experiments at this Reynolds number do possess a very
good kÿ5=3 Kolmogorov law over a quite long range at large
wave numbers. In our results, a Kolmogorov law may be ob-
served (see Fig. 5) only over a short range, whereas the slope is
steeper near kc (close to 2, in agreement with Fig. 2). We had
already observed this defect in LES of isotropic turbulence
using the plain spectral-cusp model (with a ®xed parameter
m � 5

3
), and also the present spectral-dynamic model (Ossia,

1997). Therefore, it is clear that the extra reduction of the eddy-
viscosity brought by the slope )2 is not su�cient to permit the
establishment of an exact Kolmogorov cascade at kc.

Since the spectral-dynamic model enables us to ®nd good
estimates of second-order velocity moments, it is interesting to
examine higher order velocity moments as well as pressure
statistics. The 3rd and 4th order moments of the streamwise
velocity ¯uctuations at the end of the simulation are presented
in Fig. 6. No self-similar state was attained at these moments,
and longer simulations are necessary. Note however that
present statistics allow to observe the non-Gaussian character
in the intermittency zone between rotational and irrotational
¯uid out of the mixing layer. On the other hand, we have
u03h i � 0 and u04h i= u02h i2 � 3 in the middle of the shear layer,

indicating a Gaussian behaviour. The curves are qualitatively
similar to the ones determined experimentally by Spencer and

Fig. 4. 3D mixing layer; comparison of present velocity ¯uctuations variances (lines) with experimental data (symbols) of Bell and Mehta (1990).

Fig. 5. 3D mixing layer, normalized three-dimensional kinetic energy

spectra at t� 50 (±±±), 55 (- - -) and 60 di=U (- - -).
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Jones (1971), but the maximum values, localized at the edges
of the mixing layer, are higher than the experimental ones.

Another interesting feature is the behaviour of the mean
and ¯uctuating pressure. Fig. 7 shows their vertical distribu-
tion at the end of the simulation. Since the pressure gradient in
a vortex tube is directed towards the exterior of the tube, the
mean pressure pro®le is minimum at the middle of the mixing
layer, where the vorticity imposed by the KH vortices is
maximum. As seen previously for high-order velocity mo-
ments, no self-similar state can be observed for the ¯uctuating
pressure variance, indicating that the second-order moment of
pressure ¯uctuations takes more time to become self-similar
than its velocity counterpart. We ®nd at the end of the simu-
lation p0h i=�qU 2� � 0:14, which is close to the value 0.11 de-
termined experimentally by Spencer and Jones (1971). Fig. 8
shows the pressure spectrum Epp�k� at t � 60 di=U . We recall
the kÿ7=3 Batchelor±Oboukhov's law (see, e.g., Batchelor,
1953) for isotropic homogeneous turbulence, where one as-
sumes a Kolmogorov law for the kinetic-energy spectrum and
makes a quasi-normal evaluation of the fourth-order velocity
correlations. In fact, this analysis leads to

Epp�k� � k E�k�� �2: �10�
Such a law is still under debate for isotropic turbulence. For
the mixing layer, it is clear from Fig. 8 that no kÿ7=3 pressure

spectrum exists, and that we are not far from a kÿ5=3 law for
the pressure. This shows that the quasi-normal assumption
leading to Eq. (10) is not valid.

3.2.2. Coherent-vortex dynamics
Let us look now at the three-dimensional vortical structure.

Fig. 9 presents a perspective view of vorticity-modulus iso-
surfaces (threshold |xi|), at t� 14, 26, 40 and 60 di=U . At
t � 14 di=U , one can see a dislocated array of four rolling-up
Kelvin±Helmholtz vortices, similar to the con®guration found
in previous DNS of Comte et al. (1992) and laboratory ex-
periments of Chandrsuda et al. (1978), and called ``helical
pairing''. Secondaries streamwise vortices are also stretched by
the deformation ®eld induced between the big vortices. At
t � 26 di=U large structures pair. The subsequent pairing is
more di�cult to identify from the vorticity isosurfaces, mainly
because of a rapid growth of small-scale structures. At the end
of the simulation (t � 60 di=U ), the vorticity ®eld displays only
the presence of intense small-scale vortices, with no obvious
preponderant orientation. By contrast, the low-pressure ®eld
(see Fig. 10) indicates the presence of one big quasi two-di-
mensional vortex, stretching thinner longitudinal vortices.
Note however that the computational domain is too small at
this instant, with regard to the vortex size.

Fig. 6. 3D mixing layer; third- (left) and fourth-order (right) moments for the streamwise velocity ¯uctuation at t � 60 di=U .

Fig. 7. 3D mixing layer; mean (left) and pressure variance (right) at t � 60 di=U .

496 J.H. Silvestrini et al. / Int. J. Heat and Fluid Flow 19 (1998) 492±504



3.3. Q2D perturbation case

3.3.1. Model validation and statistical results
The time evolution of the slope m of the three-dimensional

kinetic energy spectrum close to the cuto� and of E(kc) is
presented in Fig. 11. Until t � 10 di=U the eddy viscosity is
inactive since m6 3. Between t � 10 di=U (time of KH vortices
roll-up) and 20 di=U (beginning of the ®rst pairing), the slope
takes a rather constant value of m� 2.5. After that, and until
the end of the simulation, m tends asymptotically to 2, the
same value as in the previous 3D case. By contrast, the evo-
lution of the kinetic-energy at kc is di�erent, since it keeps on
increasing at the end of the simulation. This last observation
suggests that no self-similar behaviour has been reached here.

The statistics of the second-order moments of the velocity
con®rm this idea. At the end of the simulation (t � 85 di=U ),
their maximum values at the center of the mixing layer are:
u02h i=U 2 � 0:20, t02h i=U 2 � 0:20, x02h i=U 2 � 0:17 and
ÿ u0v0h i=U 2 � 0:08. These values are higher than the self-simi-
lar ones obtained in the 3D Case and measured in Bell and
Mehta's experiments (see Fig. 4).

3.3.2. Coherent-vortex dynamics
Fig. 12 shows vorticity-modulus isosurfaces of the quasi 2D

mixing layer. The threshold value is 2|xi|/3 for t� 14 or

Fig. 9. 3D mixing layer; from left to right and top to bottom, perspective views at t� 14, 26, 40 and 60 di=U showing isosurfaces of the vorticity

modulus at a threshold of |xi |.

Fig. 8. 3D mixing layer; normalized three-dimensional pressure spec-

trum at t � 60 di=U .
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30 di=U , and |xi| for t� 45 or 60 di=U . The ®rst pairing begins
with the merging of the two central KH vortices at t � 14 di=U
and ®nishes with the merging of the two exterior KH vortices
at t � 30 di=U . Intense streamwise vortices are stretched in the
stagnation zone between the KH vortices, following a mech-
anism proposed by Lin and Corcos (1984). At t � 45 di=U , the
central KH vortex begins to oscillate in the spanwise direction,
which seems to trigger the second pairing. At the end of the
simulation, there is only one KH vortex, easily identi®ed by
isosurfaces of low pressure. Fig. 13 shows top and side views
of the vorticity-modulus and low-pressure isosurfaces at
t � 85 di=U , when the simulation is stopped. The side views

show the stretching of a hairpin vortex between the KH
structures. This hairpin might result from the evolution of the
large vortex oscillating in the spanwise direction observed
before. Note ®nally the presence of intense small-scale vortices.

4. Application to channel ¯ow

4.1. Flow con®guration

In this section, the turbulent plane channel ¯ow submitted
(or not) to spanwise rotation is considered. Let ~uh i � � uh i; 0; 0�

Fig. 10. Same as in Fig. 9 at t � 60 di=U ; top (left) and side (right) views of vorticity modulus (threshold 1.4 |xi |, above) and low-pressure isosurfaces

(bottom).

Fig. 11. Q2D mixing layer; time evolution of m (±±±) and E(kc) (- - -).
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be the mean relative velocity in a Cartesian coordinates system
(x, y, z) associated to the rotating frame. x, y and z are re-
spectively the streamwise, wall-normal and spanwise direc-
tions, the rotation vector being ~X � �0; 0;X� (see Fig. 14).

The half-channel height is noted h and the bulk velocity Um.
Non-dimensional parameters used here are the Reynolds
number Re � Um 2h=m and the global Rossby number
Rog � 3 Um=�2X h�. Small values of the latter concern strong
rotation regimes where Coriolis forces dominate inertial forces,
while in®nite global Rossby number corresponds to no rota-
tion. Note that the 3

2
factor in the global Rossby expression is

consistent with a previous work where transitional rotating
channel ¯ow was considered (Lamballais et al., 1996b). In a
laminar situation (Poiseuille ¯ow), this global Rossby corre-
sponds to the ratio of the vorticity at the wall �3 Um=h� upon
the solid-body rotation vorticity 2X.

4.2. Model adaptation

An adaptation of the model formulation is necessary to
treat the direction of inhomogeneity y. In the present case,
two-dimensional spectra E2d�y; k2d; t� have been used, with
k2d �

���������������
k2

x � k2
z

p
. A slope m(y, t) is then de®ned for each kinetic-

energy spectrum in planes parallel to the walls, in such way
that the spectral-eddy viscosity takes the ®nal form

m1�t �y; k2d; t� � 0:31 Cÿ3=2
k

5ÿ m�y; t�
m�y; t� � 1

3ÿ m�y; t�� �1=2

� �1� 34:5eÿ3:03�kc=k2d�� E�y; kc; t�
kc

� �1=2

: �11�
Note that the spectral formulation used in this model concerns
only horizontal directions. Numerically, m(y,t) is evaluated
using a least-square method applied on a spectral range of
highest wave numbers. For simulations presented here, a quite
wide range of wave numbers has been considered
(kc=2 < k2d < kc), but it has been veri®ed that this range can be
reduced without signi®cant modi®cation of the results.

A last remark concerns the use of a two-dimensional
spectrum instead of a three-dimensional one. In an isotropic
turbulence context, a 3D-spectrum E�k� � c1 kÿm may be de-
duced from a 2D-spectrum E2d�k2d� � c2 kÿm

2d by integration: it
is found

c1

c2

� C�1
2
�C�1

2
�m� 1��

3C�1
2
m� 1� ÿ C�1

2
�C�1

2
�m� 1��

6C�1
2
m� 2�

( )
: �12�

With the aid of this expression, it is possible to evaluate the
3D-spectrum at the cuto� wave number E(kc). Note however
that this correction is not fully justi®ed if the y-direction is
inhomogeneous, as in the present situation. From a practical
viewpoint, we have checked that use of the correction factor

Fig. 12. Q2D mixing layer; from left to right and top to bottom, perspective views of the vorticity modulus for t� 14, 30 (threshold 2|xi |/3), 45 and

60 di=U (threshold |xi |).
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given by Eq. (12) in the subgrid-scale model has a negligible
e�ect on the ®nal result.

4.3. Non-rotating channel

We use here a mixed spectral-compact code having quasi-
spectral accuracy (see Lamballais, 1996, for details). We ®rst
present two LES of non-rotating channels at Re� 6666 (case A)
and Re� 14 000 (case B). The grid re®nement close to the wall
allows to simulate accurately the viscous sublayer. The resolu-
tion is (64 ´ 65 ´ 32) for case A, and (128 ´ 97 ´ 64) for case B.

Fig. 15 shows the mean velocity pro®le in case A, compared
with the LES of Piomelli (1993) using the dynamic model of
Germano (1992). The latter is known to be in good agreement
with experiments or DNS at this low Reynolds number.
Present results coincide, with for instance correct values for the
Karman constant or the friction velocity.

Fig. 16 shows for case A the rms velocity ¯uctuations,
compared with Piomelli's results. The agreement is still very

good, with a correct prediction of the longitudinal velocity
¯uctuations peak, corresponding to a maximum intensity of
the high and low-speed streaks.

Fig. 13. Same as in Fig. 12 at t � 85 di=U ; top (left) and side (right) views of vorticity modulus (threshold |xi |, above) and low-pressure isosurfaces

(bottom).

Fig. 15. Channel ¯ow, h� � 204; comparison of the mean velocity

pro®le (straight line) versus dynamic-model simulations of Piomelli

(1993) (symbols).

Fig. 14. Schematic view of the rotating channel.
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The same velocity statistics for case B are presented on
Fig. 17 and compared with the DNS of Antonia et al. (1992) at
approximately the same Reynolds number. It can be seen that
mean velocity and turbulence intensities obtained by present
LES are in good agreement with (un®ltered) DNS results.
Notice that LES allow in this case to reduce the computational
cost by a factor of nearly hundred with respect to the DNS.

Quality criteria based only upon statistics may be insu�-
cient. Indeed, we have observed that a simulation without any
subgrid-model (at the same Reynolds number and resolution)
gives statistics of the velocity ®eld (mean value, variances and
Reynolds stresses) not dramatically a�ected, while kinetic-en-
ergy spectra or instantaneous vorticity ®elds are very unreal-
istic. Fig. 18 presents a vorticity visualization in the LES,
compared with a DNS at lower Reynolds. The coherence of
the large-scale motion in terms of hairpin ejections and streaks
at the wall is preserved in the LES. It is clear also that LES
indicate features expected from turbulence at higher Reynolds
number, and display much more vortical activity in the small
scales than the DNS. The small (resolved) scale activity thus
predicted is susceptible of enhancing mixing or chemical re-

actions in LES of turbulent transport or combustion for in-
stance.

We have thus shown that the spectral-dynamic model gives
a good near-wall behaviour in turbulent wall ¯ows, without
use of any ``hand-tuned'' constant in the eddy-viscosity for-
mulation. To illustrate the importance of the eddy-viscosity
correction, Fig. 19 shows the pro®le of the spectral exponent
m(y,t) averaged with time. It can be noticed ®rst that spectra
are clearly steeper than Kolmogorov in the whole channel. In
addition, m is very close to 3 or higher in the viscous region,
corresponding to a very low (or zero) value of the eddy vis-
cosity. This permits correct near-wall statistics. Dynamic
models in physical space present the same advantage, but not
via an explicit control of the energy distribution in the highest
wave numbers. Such a control may ensure a realistic decreas-
ing kinetic energy spectrum near the cuto� wave number kc, as
we have noticed in all the large-eddy simulations performed
with the spectral-dynamic model. In the present case, one
should check on the experiments at this Reynolds number
whether the quite steep velocity spectra obtained here are re-
alistic, or if they are an artefact of the model. Indeed, we have
seen above for the mixing layer or for isotropic turbulence that
the spectral-dynamic model slightly overestimates the inertial-
range exponents, from 5

3
to 2.

4.4. Rotating channel results

The spectral-dynamic model has been also applied to the
rotating turbulent channel (Lamballais, 1996; Lamballais et
al., 1997), where results in good qualitative agreement with
DNS at lower Reynolds numbers (Lamballais, 1996; Lam-
ballais et al., 1996a) were obtained. The spectral-dynamic
model is assessed here for a very strong rotation, corre-
sponding to Rog� 2. For such a rotation rate, DNS have
shown that a quasi-laminar zone develops in the cyclonic re-
gion while, in the anticyclonic region, the vortex organization
of the ¯ow di�ers strongly from the non-rotating case. For
present LES with higher Reynolds number, the same tenden-
cies can be observed (see Fig. 20). For instance, a pdf analysis
of the angle made by hairpins with the horizontal plane (not
presented here) shows that vortices in the anticyclonic region
lean more and more towards the wall as the Rossby number
diminishes, while becoming more coherent.

To our knowledge, no equivalent DNS nor experiments at
identical Reynolds number and rotation rate as present LES
are given in the literature. Validation of the present simulation
is therefore not yet feasible. It may be however interesting, at
the same Rossby number, to compare DNS at lower Reynolds
number (Re� 5000) with present LES at Re� 14 000. Here,
we concentrate our attention on the reduction of the cyclonic
friction velocity (noted usc

) with respect to its value without
rotation (noted u1s ) for the same Reynolds number. We ®nd
that this reduction is more marked for Re� 14 000 (LES) than
for Re� 5000 (DNS), with usc

=u1s respectively equal to 0.50
and 0.59. For moderate rotation (18 < Rog < 25), Johnston et
al. (1972) have reported the same tendency, i.e. a reduction of
the normalized cyclonic wall friction with the increase of the
Reynolds number (Re� 10 300 and Re� 11 400). Cyclonic
friction velocity was found to be lower in these experiments
than in DNS (Kristo�ersen and Andersson, 1993; Lamballais,
1996). On the other hand, and for similar rotation rates,
Launder and Tselepidakis (1994) in calculations using a one-
point closure model, and Piomelli and Liu (1995) with LES,
have noticed on the contrary an increase with the Reynolds
number of the normalized friction velocity. Hence, further
computations (very high resolution DNS) or experiments are
necessary to decide about this point.

Fig. 16. Same as Fig. 15, but for the rms velocity ¯uctuations, from

top to bottom longitudinal, spanwise and transverse velocities.

Fig. 17. Channel ¯ow, comparisons of present LES using the spectral-

dynamic model (straight lines, h� � 389) with the DNS of Antonia et

al. (1992) (symbols, h� � 395); (a) mean velocity, (b) rms velocity

components.
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Fig. 18. Channel ¯ow, isosurface of the vorticity modulus x � 4:5 Um=h; (a) DNS at Re� 5000, (b) LES at Re� 14 000 (the ¯ow goes from left to

right).

Fig. 19. Same LES as Fig. 17, pro®le of hmi, the time-averaged value of the kinetic-energy spectrum slope, as a function of y�.

Fig. 20. LES of the rotating channel ¯ow at Re� 14 000 and Rog� 2; isosurface of the vorticity modulus x� 3.375 Um/h.
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5. Return to physical space

In order to take into account the intermittency of turbu-
lence, and to consider ¯ows in complex geometries (without
any periodic direction), a formulation of spectral dynamic
model in physical space is naturally very useful. Three speci®c
adaptations are then required, concerning
· the k-dependence of the eddy viscosity;
· the evaluation of the kinetic energy at the cuto� wave num-

ber kc;
· the determination of the spectral slope m.
In fact, the k-dependence of the eddy viscosity de®ned by the
function K(x) in Eq. (3) can also be put under the form
K�x� � 1� m�nx2n, with 2n � 3.7 (Chollet and Lesieur, 1982).
Determining m�n on the basis of subgrid-energy conservation
(MeÂtais, 1996), and approximating 2n by 4, one can propose
an equivalent of the spectral-cusp model in physical space as

orij

oxj
� 0:661

o
oxj

mSF
t

o�ui

oxj
� o�uj

oxi

 !" #
� 0:014 Dx4 mSF

t �r2�3�ui; �13�
where rij is the traceless subgrid-scale tensor

rij � Tij ÿ 1

3
Tkkdij with Tij � ui uj ÿ uiuj: �14�

Here, mSF
t is the eddy-viscosity of the structure-function model

(MeÂtais and Lesieur, 1992). This model has been applied with
success by Garnier et al. (1998) for the study of the instability
of a baroclinic jet resulting from a thermal front in a rotating
stably-strati®ed atmosphere.

Multiplying the operator of Eq. (13) by ~A, with

~A � 2
���
3
p

5

5ÿ m
m� 1

�3ÿ m�1=2
; �15�

we obtain a subgrid-scale model de®ned in physical space and
equivalent to the spectral-dynamic model. Strategies to eval-
uate m have to be developed.

6. Conclusions

With the aid of nonlocal spectral expansions of the ED-
QNM two-point closure theory of isotropic turbulence, we
have developed a spectral-dynamic model for LES of turbu-
lence. The model combines Kraichnan's plateau-cusp formu-
lation with a correction accounting for kinetic-energy spectra
which may behave di�erently from Kolmogorov at the cuto�.
This model has been applied successively to a temporal mixing
layer and a channel ¯ow.

The mixing layer is forced initially by a hyperbolic-tangent
velocity pro®le to which is superposed a weak random per-
turbation. Two cases have been considered: a 3D isotropic or a
quasi 2D perturbation. In the 3D case, we converge towards a
self-similar state in very good agreement with the laboratory
experiments of Bell and Mehta (1990), as far as the growth
rate, mean velocity, rms velocity and Reynolds-stress pro®les
are concerned. However, the kinetic-energy spectra behave like
kÿ2 at the cuto�, instead of the kÿ5=3 Kolmogorov law which is
expected from the experiments at similar Reynolds numbers.
Such a behaviour pertains in fact to the spectral-dynamic
model, which gives similar results for isotropic turbulence. The
pressure spectrum has a long range slightly shallower than
kÿ5=3, and in disagreement with predictions which can be made
using quasi-normal assumptions. We have also looked at the
dynamics of coherent vortices, with the aid of vorticity-mod-
ulus and low-pressure isosurfaces. We have recovered the he-
lical-pairing organization, already found by Comte et al.

(1992) using DNS with the same type of initial conditions. In
the quasi 2D case, the simulation does not reach a self-similar
state, and rms velocity statistics remain much higher than the
experimental data. The kinetic-energy spectra are not very
di�erent from the 3D case. The coherent-vortex dynamics is
made of quasi two-dimensional Kelvin±Helmholtz vortices
stretching hairpin vortices between them.

For the plane Poiseuille ¯ow, the spectral-dynamic model
compares statistically very well with the Piomelli (1993) LES
using the Germano (1992) dynamic model at h� � 204. It gives
also good results at h� � 389, by comparison with the DNS of
Antonia et al. (1992), although the computing time is reduced
by a factor of the order of hundred. We have checked also that
our model does not alter the coherent-structure dynamics,
while allowing much more variability in the small scales at high
Reynolds number. This last point may be important for LES
of turbulent mixing or combustion. The case of a channel
rotating rapidly about a spanwise axis has been considered,
with results in good agreement with earlier experimental or
numerical studies.

Finally, a generalization of the spectral-dynamic model in
physical space in terms of a mixed structure-function and
hyperviscosity has also been proposed.
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